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ABSTRACT
With the rapid proliferation of camera-equipped smart de-
vices (e.g., smartphones, pads, tablets), visible light com-
munication (vlc) over screen-camera links emerges as a
novel form of near-field communication. Such communi-
cation via smart devices is highly competitive for its user-
friendliness, security, and infrastructure-less (i.e., no depen-
dency on WiFi or cellular infrastructure). However, exist-
ing approaches mostly focus on improving the transmission
speed and ignore the transmission reliability. Considering
the interplay between the transmission speed and reliability
towards effective end-to-end communication, in this paper,
we aim to boost the throughput over screen-camera links
by enhancing the transmission reliability. To this end, we
propose RDCode, a robust dynamic barcode which enables
a novel packet-frame-block structure. Based on the layered
structure, we design different error correction schemes at
three levels: intra-blocks, inter-blocks and inter-frames, in
order to verify and recover the lost blocks and frames. Fi-
nally, we implement RDCode and experimentally show that
RDCode reaches a high level of transmission reliability (e.g.,
reducing the error rate to 10%) and yields at least two-fold
improvement of transmission rate, compared with the exist-
ing state-of-the-art approach COBRA.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless
communication

Keywords
Dynamic barcodes, transmission, reliability, smartphones

1. INTRODUCTION
Visible light communication (vlc) over screen-camera

links has become an attractive short-range wireless com-
munication solution due to the high availability of camera-
equipped smartphones over the past years [12,20,25,27,33].
When data is encoded as a stream of images and displayed
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in screens, a smartphone can receive the data by capturing
the images with its camera and decoding the image stream.
Compared with the radio frequency (rf) techniques such as
Bluetooth and Wi-Fi, vlc enables direct and secure com-
munications, e.g., by controlling the direction and distance
of screen-cameras such that the visible range of a phone’s
screen content is limited to a few inches. Hence vlc sim-
plifies the complicated authentication process for setting up
link connections [12]. In addition, vlc is user-friendly and
does not count on the Internet infrastructure. These make
vlc over screen-camera links highly competitive for short-
range wireless communications, e.g., for applications such
as file transfer between smartphones when either no wire-
less connections are available or security is much concerned.
As pointed out by [33], vlc is well suited for one-time trans-
fer as it incurs no charge and no overhead in link setup and
management, compared with traditional rf techniques.

QR–Code [17] is commonly adopted for advertisement
in the market for retail and tourism for easier informa-
tion acquisition via smartphones with built-in barcode scan-
ners [33]. By Mary Meeker’s latest predictions on mobile
Internet trends, four times more QR-Codes were scanned in
March 2013 than a year before [1]. However, the capacity
limitation makes such static 2D barcodes not appropriate
for high-speed vlc.

While [25] and [3] achieve high-speed communications be-
tween large LCD monitors and high-speed digital cameras,
they are not designed for smartphone platforms with lim-
ited capabilities such as small screens and low-quality cam-
eras [12]. Recently, COBRA [12] and LightSync [33] are
proposed to solve this problem.

However, data transmission over screen-camera links re-
quires continuous image capturing, and a slight tremble may
lead to parts of a frame unrecognizable or loss of a sequence
of frames. Different smartphones also have different camera
performance, which leads to different error rates by existing
works. Further, the asymmetry nature of one-way transmis-
sion makes no feedbacks available. Reliable transimission is
rather difficult to be obtained.

The absence of reliability also limits the throughput. For
example, to keep the bit-error-rate below 10%, we have to
restrict the frame of COBRA with less than 8000 symbols
in our tests, much smaller than its maximum frame capac-
ity, because distortions and trembles make the error rate
increase seriously with the increase of the frame capacity.
Another example is that even when we introduce an error
correction code (Reed-Solomon [34]) to COBRA, it still has
to transmit 2.03 times of the encoded data on average when



receiving a 128KB file intactly in our tests. This essentially
reduces the transmission speed to 3.0KB per second.

Transmission reliability. Reliability is an important con-
cern in short-range wireless communications, including vlc
over screen-camera links, for ensuring dependable and effec-
tive data transmissions. Different applications have differ-
ent requirements, and have different definitions of reliabil-
ity [10]. Here we focus on one-time file transmissions that
need fast and/or secure data delivery, and hence, we define
reliability in terms of three aspects as follows:

(1) Correctness ensures that a receiver is able to check
whether a received packet is exactly the one sent by the
sender. Only correct packets are accepted.

(2) Integrity measures the ability that a receiver could obtain
and assemble the data sent by the sender, which indicates
the percentage of correctly delivered data.

(3) Ordering indicates the ability that a receiver is able to
know the ordering of packets.

We argue that to achieve high-speed data transmissions,
the transmission rate is only one side of the coin. The trans-
mission reliability, the other side of the coin, is equally im-
portant since failed packets in general need to be retransmit-
ted. This motivates us to develop new techniques towards
reliable transmissions for applications such as file transfer.

Limitations and uncertainty. To achieve fast and reli-
able transimissions over screen-camera links, we face sub-
stantial challenges, primarily caused by:

Smartphone limitations. It is common that (a) senders with
different types of screens may display colors differently and
in different luminance levels, and (b) receivers with different
lens and sensors may have different color processing mech-
anisms. This could lead to a common scenario such that
the image captured by a receiver may be highly different
from the original one from a sender. We summarize these
problems as follows.

(1) Lens distortions1. Commonly found lens distortions of
smartphone cameras are radial distortions that straight lines
in a captured image become distorted.

(2) Low border performance. Due to the physical structure
of lens, most digital cameras essentially have poor border
performance, e.g., low luminance, more noises and worse
sharpness in the border area.

(3) Color inaccuracies. Different luminance brightness dis-
tribution within a screen and different view angles of a cam-
era often cause colors displayed differently in different areas
of shooting ranges.

(4) Rolling shutter2. Most smartphone cameras use CMOS
sensors that adopt roll shutter for image acquisition, in
which each frame is recorded not as a single snapshot, but
rather by scanning across the frame either vertically or hori-
zontally. As a result, different parts of a captured frame may
belong to distinct frames when capturing image streams.

User behavior uncertainty. Different users may behave dif-
ferently when shooting pictures. The user behavior uncer-
tainty includes but not limited to:

(1) Different positions. It is common that users may capture

1http://en.wikipedia.org/wiki/Lens Distortion
2http://en.wikipedia.org/wiki/Rolling shutter

Figure 1: RDCode architecture

only a part of the barcode on the screen because of the
restriction of shooting positions.

(2) Unexpected behaviors, including mostly trembles of the
hands, could interrupt the transmission for a short period.

The two challenges typically introduce two issues: (a) the
locality problem that for an image with uniform features,
the close places in its captured image have similar features,
while places far from each other present different features,
and (b) the partial unavailability problem that leads to ei-
ther unrecognizable parts of a frame caused by e.g., unsuit-
able shooting positions or temporally sequential frames loss
caused by e.g., trembles.

Other restrictions include the limited computing ability
such that standard image processing techniques are not ap-
propriate for continuous image decoding with smartphones.
These make it even challenging to build high-speed reliable
vlc over screen-camera links using smartphones, as only
light-weight techniques could be employed to address the
above mentioned problems.

Contributions&Roadmap. We propose a robust dy-
namic barcode (RDCode) by encoding and decoding a
stream of barcode images, which boosts the throughput over
screen-camera links by improving the reliability. RDCode
reaches a high level of transmission reliability and doubles
the transmission rate compared with the existing state-of-
the-art approach COBRA, by addressing the aforementioned
limitations and uncertainty. To our knowledge, this is the
first call for high-speed vlc over screen-camera links using
smartphones by enhancing the transmission reliability.

(1) We design a novel packet-frame-block barcode layout
(Section 2), such that a packet comprises a sequence of
frames, each of which further consists of a set of independent
blocks. This design not only enhances the transmission relia-
bility by addressing the smartphone limitations and user be-
havior uncertainty, but also improves the transmission rate.

(2) We develop a tri-level data correction and ordering ap-
proach to enhancing reliability (Section 3), based on the ob-
servation that error distributions follow a certain spatial and
temporal regularity. Error corrections at intra-blocks, inter-
blocks and inter-frames are for the verification of blocks, re-
covery of lost blocks and recovery of lost frames, respectively.
A short sequence number is also attached with each block for



Figure 2: A center locator pattern
with 7× 7 pixels

synchronization. These together enhance the transmission
reliability of RDCode with a reasonable overhead.

(3) We implement RDCode on top of an Android platform
for file transmissions (Section 4), and its architecture is
shown in Fig. 1. We also conduct an extensive experiment
study (Section 5), which shows that RDCode reaches a
high level of transmission reliability (e.g., reducing the er-
ror rate to 10%) and yields at least two-fold improvement of
transmission rate, compared with the existing state-of-the-
art approach COBRA.

2. BASIC DESIGN
In this section, we introduce the basic design of RDCode,

including layout design and adaptive symbol extraction that
lay down the base towards high-speed reliable vlc over
screen-camera links via smartphones.

2.1 Design Principles
We have done extensive tests, and found that failures of

recognizing barcodes are typically due to locality and par-
tial unavailability problems. For example, when capturing a
barcode with four corner locators such as COBRA [12], the
failed detection of one or two corner locators leads to the
complete failure of the entire barcode. Another example is
the light reflection or bad border performance that makes
a certain region of the captured barcode unreadable. This
situation is even serious for dynamic barcodes since contin-
uous locating and decoding frames needs more robustness.
This implies that to obtain high transmission reliability, a
barcode layout should address the locality and partial un-
availability problems (Section 1).

In order to address them, the ideal method is to make each
frame and each symbol independent and recoverable, e.g.,
each frame or symbol has independent locators, sequence
number and decoding methods. But it is impossible because
massive overhead will be introduced, and a rather high com-
putational complexity is required. A practical solution is to
build intermediate layers above the symbols and frames.

This leads to a new design of dynamic barcodes: (a)
a packet-frame-block tri-level structure to address the two
aforementioned problems, in which each frame is associated
with a single center locator and multiple distributed loca-
tors, and (b) a sequence of frames are aggregated into a
packet as a logical transmission unit.

2.2 Layout Design
Symbols, blocks, frames, packets, center locators, dis-

tributed locators and color palettes form the basic structure
of RDCode, and we first introduce them in detail.

Symbols. A symbol is a p×p square of pixels with the same
color. Symbols are the basic units for data transmission.

Data symbols. A data symbol is a special class of symbols
that is not in a black or white color.

There are in total c ≥ 4 colors for data symbols, and hence
a data symbol indeed encodes a log2c-bit data. Here black
and white colors are reserved for the center and distributed
locators to be introduced immediately.

Blocks. A block is a h× h square of symbols.

Figure 3: RDCode frame layout

Frames. A frame is a m × n rectangle of blocks, in which
both m and n are odd.

Packets. A packet is a sequence of a fixed number of con-
tinuous frames.

Moreover, each block within a frame has a unique index,
and each frame has a unique index (i.e., its order in the
sequence) within a packet.

We next introduce the center and distributed locators on
which symbol extraction heavily relies.

Center locators. There is a unique symbol pattern, re-
ferred to as a center locator, embedded in the center block
of an RDCode frame. The detailed design of center locator
is orthogonal to our work. As illustrated in Fig. 2, a cen-
ter locator of RDCode is a square of symbols, in which (a)
the center is a square of black symbols, (b) the borders are
all black symbols, (c) there is a symbol inside each border
corner with a distinct color of the c colors for data symbols;
and finally (d) the rest are filled with white symbols.

Center locators allow fast detection of frames, and the four
colorful symbols are used to estimate the shooting angle and
image rotation.

Distributed locators. For the ease of explanation, we
append a frame with m×n blocks to (m+1)×(n+1) blocks
with dummy blocks. The top left most black symbol inside
a block is referred to as a distributed locator of the original
frame. Here (a) a frame withm×n blocks has (m+1)×(n+1)
distributed locators, (b) there are four distributed locators
around a block, which are used to locate the data symbols of
the block, and (c) a frame is further attached with m+n+1
extra symbols after distributed locators are introduced, as
illustrated by the example frame in Fig. 3.

Distributed locators allow simple and efficient locating
and tracking of RDCode, as will be seen immediately.

Color palettes. As most data transmission systems do, a
receiver needs to turn the raw channel signals into discrete
bits. For barcode based systems, raw channel signals are
the pixel colors. To design effective methods to distinguish
different colors, we embed another pattern into each block
at a fixed position, referred to as a color palette which is a
square of c symbols, each in a distinct color of the c colors
for data symbols.

As a block often has more than 100 symbols, the color
palettes and distributed locators in a frame typically incur
a reasonable overhead, the price that we have to pay for en-
hancing transmission reliability. For example, for a RDCode
frame containing 11*7 blocks, each of which has 12*12 sym-
bols, only 563 out of all 14,275 of its symbols are dedicated
to its center locator, distributed locators and color palettes.
In contrast, for a COBRA frame with 132 ∗ 108 = 14, 256
symbols (roughly the same number of symbols as the previ-
ous RDCode frame), 1,404 out of its symbols are dedicated
to those frame markers, around 2.5 times of RDCode.



Figure 4: Distributed locator detection

2.3 Adaptive Symbol Extraction
We will next introduce the techniques to achieve adaptive

symbol extraction when receiving frames. Adaptive means a
receiver could adjust its parameters with the changing of its
captured frames. This is essential to transmission reliability
since the transmission performance should not be affected by
different situations. Moreover, in order to address the par-
tially unavailability problem, blocks and locators are treated
independently in RDCode .

(1) Adaptive locator detection. We first introduce the
adaptive method to detect locators within a frame such that
even if some locators fail to be located, those blocks whose
locators are correctly detected remain readable.

A receiver will first locate the center locator at the first
captured frame, and we adopt the Mean-shift algorithm [6]
to detect it in our implementation. Then the receiver ana-
lyzes the four colorful symbols in the center locator to detect
the rough direction and distance of these symbols, and the
perspective distortion of the frame. The receiver could also
know the rough side length of symbols using the black sym-
bols inside the center locator.

After that, the receiver recursively detects the distributed
locators starting from the four distributed locators around
the center block. (a) The positions of the four distributed
locators around the center block can be easily computed
based on the position of the center locator, the direction
and the symbols’ side length. The precise positions of the
locators are obtained by the Mean-Shift algorithm or fast
adjusting algorithm. (b) Then, as long as three out of the
four distributed locators around the center block are suc-
cessfully located, the receiver can recursively locate the rest
distributed locators. We define locator A is adjacent to lo-
cator B if and only if they are around the same block. Then,
for any three distinct locators A, B and C in a straight line
in the sender frame where A is adjacent to B and B is adja-
cent to C, if the receiver knows the precise positions of any
two of them in the captured frame, it can estimate the po-
sition of the third one based on their geometry relationship.
For example, if the precise positions of locators A and B are
known, the position of locator C can be estimated by assum-
ing vectors ÃB = B̃C, as shown in Fig.4. The Mean-Shift
algorithm or fast adjusting algorithm is then processed to
get its precise position. This above process repeats until no
more distributed locators can be successfully located.

Fast adjusting algorithm. We next introduce the main idea
of the fast adjusting algorithm. In our work, Mean-Shift al-
gorithm [5] is used to get the center position of the black area
in a center or distributed locator, given an estimated initial
search position. The essential step of Mean-Shift algorithm
is to calculate the mean position of all the black pixels in
a circular search area with radius r in each iteration, which
needs to identify the colors of O(r2) pixels.

Observe that in a captured distributed locator, the black
pixels are clustered as a rectangle, and when locating a dis-
tributed locator, its precise position is very close to the ini-
tial search position that is well estimated by the positions

of other distributed locators or the corresponding locator’s
precise position in the last captured frame. Hence we can
use linear search instead of quadratic search (with respect
to the search radius r), when the initial search position is
already in the distributed locator to be located. We describe
this optimization in detail as follows.

Given the pixel at the initial search position, if it is black,
it has a high probability that it is right in the distributed
locator. As a result, we use fast adjusting algorithm: in-
stead of searching the large circle area, it simply searches
the left most, right most, top most and bottom most contin-
uous black pixels from the initial search position. Let these
four black pixels’ positions be pl, pr, pt and pb, respectively.
We denote the precise position of the distributed locator as
((pl + pr)/2, (pt + pb)/2) if the color of the pixel at this po-
sition is black. Otherwise, the Mean-shift algorithm is used.
Gaussian filter [31] is adopted to reduce the interferences
from the noises in the process. The above method works
well in our implementation.

Note that (a) once a locator is located, it is independently
tracked while dealing with the successive frames, and the
failed detection of one distributed locator has no effects on
other distributed locators. The locators are autonomous,
but also co-related. Failed distributed locators still have a
chance to be relocated later when two of its adjacent dis-
tributed locators are detected. Even if it fails again, the re-
ceiver could still use the estimated position instead. (b) Be-
cause locators split one frame to several small-sized blocks,
this method also addresses radial distortions and increases
the accuracy of decoding. (c) Except for detecting the cen-
ter locator, our approach doesn’t need to search the entire
frame, and the center locator only needs to be located for
the first captured frame. In most cases, the receiver only
needs to visit several thousand pixels to locate one frame.

(2) Adaptive color discrimination. We then introduce
the adaptive methods to discriminate different colors.

To decode data symbols, a receiver needs to correctly iden-
tify their colors. The color palette in a block is firstly iden-
tified as its position is fixed. Then the c colors in the color
palette are detected using Gaussian filter [31]. Then, for
each located data symbol, the Euclidean distances of its
color and the c colors in the color palette are computed,
and the color with the closest distance is chosen as the color
of the data symbol.

The color palette must be identified accurately, or the en-
tire block could be affected. Temporally changing environ-
ments and location errors may lead to the failure of the color
palette’s correct detection. In order to solve this, we adopt
a smoothing method. Assume that we have the old color
palette of a block represented as a vector Colorold and the
block at the same position of the next coming frame with a
new color palette P . If the block is decoded successfully, we
let Colornew = (1 − µ)Colorold + µP where µ is a param-
eter set to 0.3 in practice, and keep Colornew = Colorold,
otherwise. To prevent incorrectly recognized color palette
from affecting subsequent blocks, if the following error cor-
rection method cannot correct the block, the color palette of
its subsequent block will not adopt the smoothing method.

Black and non-black colors also need to be discriminated
when locating distributed locators. The process is similar.
The initial color behavior may be known by analyzing the
pixels in the central part of a frame. A histogram of their



brightness can be built, where the x-axis is the brightness
of pixels, and the y-axis is the number of pixels that fall
into a brightness bin. Typically, there exist a maximal bin,
a minimal bin and another maximal bin in order. The first
bin is for black pixels, the third one is for colorful pixels,
and hence the mid brightness of the second bin can be used
as a brightness threshold, referred to as m, to distinguish
black from non-black colors.

Each distributed locator has a different threshold. When
detecting a locator, all visited pixels recognized as black or
non-black are used to revise the threshold for that locator,
and they are split into two groups: (a) one with brightness
less than the old brightness threshold mold, and (b) another
one with brightness equal or greater than mold, where b and
n are the average brightness of the two groups, respectively.
Then we adjust the brightness threshold as follows: mnew =
(1−µ)mold +µ(b+ n)/2. After several frames, each locator
has its own adaptive brightness threshold.

(3) Symbol location calculation. After all distributed
locators around a block are located, it is easier to locate
the symbols of the block. Previous barcode designs such
as COBRA and DataMatrix [16] use timing symbols at the
borders of a frame as references to locate all other symbols,
and this incurs high overhead. For RDCode, a block contains
much less symbols than a frame, and hence the perspective
distortion is not serious. As a result, the location accuracy
is high, and there is no need to introduce timing symbols
around each block. We simply compute the position Pxy of
the symbol at coordinate (x, y) as follows.
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h
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h
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h
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h
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)(
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)
,

where P1, P2, P3 and P4 denote the four positions of the
left top most, right top most, left bottom most and right
bottom most distributed locators around a block with h×h
symbols, respectively.

Remarks. RDCode is in nature to address the locality and
partial unavailability problems caused by smartphone limi-
tations and user behavior uncertainty.

(1) Blocks and distributed locators in a frame are au-
tonomous. For instance, distributed locators are tracked in-
dependently, each of which has its own black color threshold
and own color palette. Blocks could also be decoded asyn-
chronously by a receiver, so the rolling shutter limitation
could be alleviated. Block autonomy also enables the flex-
ibility to design effective and efficient reliability techniques
(to be seen in Section 3).

(2) The adaptive techniques for symbol extraction improve
the locating and decoding accuracy, by using successive
frames in a dynamic barcode system.

(3) Compared with the design of four corner locators in a
frame like COBRA and LightSync, our design of center lo-
cators has less failure possibility and less locating time. The
incorporation of the center and distributed locators further
improves the locating success rate, as distributed locators
help the locating of their adjacent distributed locators. As
a result, the block locating success rate is significantly im-
proved as shown by our experiments.
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(4) It is worth mentioning that there exist more advanced
algorithms to improve the success rate of locating frame cor-
ners, such as Hough transform [4] and local binarization [35].
However, in a barcode stream decoding scenario using smart-
phones, the computational overhead should be small in the
first place. It is this reason why COBRA adopts a simple
heuristic localization algorithm, but not those advanced al-
gorithms. Our localization algorithm is effective and incurs
only a small overhead, and it is specifically designed for RD-
Code, which cannot be directly adopted by COBRA.

3. TECHNIQUES FOR RELIABILITY
In this section, we first analyze the characteristics of error

distributions. We then introduce the error correction tech-
nique for data correctness and data integrity, followed by
the data ordering technique.

3.1 Analyses of Data Errors
We utilize a tablet as the sender and two smartphones

with different cameras as receivers to experimentally analyze
the error characteristics of the RDCode frames.

Uneven error distribution. We give an analysis of the
RDCode frames with 9×13 blocks displayed on a tablet, cap-
tured by two different smartphones, and find that in barcode
systems, errors are not randomly distributed. We count the
average bit-error rates of blocks, i.e., the ratio of error bits
among all bits in a block. As shown by Fig. 5, errors are
unevenly distributed in a frame and have certain regularity:
(a) blocks close to the border area have higher error rates,
due to the limitations of smartphones, and (b) other blocks
may have a rare amount of errors on average.

Wide range of error rates. Basically the data errors of
a dynamic barcode system can be classified into three types
with different range of error rates:

(1) Caused by noises. Noises are inevitable and the border
area has more noises due to the low border performance and
the physical structure of image sensors. Typically the error
rate is less than 10% due to the data errors caused by noises,
depending on the environments and devices.

(2) Caused by block decoding failures. When (a) errors occur
at some locators due to noises or at data symbols due to
partial unavailability, or (b) dirty marks that cause their
shelter symbols unreadable, the corresponding blocks often
fail to be correctly decoded. This often results in an error
rate around 10% to 100% for those affected blocks. Also,
border areas has high possibility of block decoding failures
since unsuitable shooting positions could easily make border
areas out of the capture scope.

(3) Caused by frame decoding failures. When trembles hap-
pen, the affected frames are likely to be streaking due to
motion blur. Almost an entire frame are unable to be de-
coded. Another reason to cause frame decoding failures is



the fast refresh rate with low brightness, so that receivers
could capture overlapped frames. The colors of data sym-
bols within adjacent frames may overlap with each other to
make them unreadable. Although LightSync [33] focuses on
the overlapped frames, it is for data symbols with black and
white colors only, and cannot be used in our work for free.

Limitations of error correction techniques. In one-
way communication, the standard approach to protecting
data correctness is to use Forward Error Correction (FEC)
to correct errors by adding redundant data [32]. When burst
errors happen frequently, FEC often cuts no ice. Interleaved
codes ameliorate FEC by shuffling the data symbols to sev-
eral messages to create a uniform error distribution [32].
However, FEC and interleaved FEC cannot be easily incor-
porated into RDCode, as analyzed below.

(1) FEC is designed to correct random errors, but when
the error distribution has regularity, it is not very efficient.
A small amount of redundant codes cannot correct all er-
rors, but a large amount of redundant codes lead to small
throughput. Hence, messages at different areas should have
different error correction ability.

(2) The error rate fluctuates widely and distributes unevenly.
To design a good interleaved FEC is extremely difficult, since
the intense burst errors may have impacts on other good
areas with low-error rates. As data symbols in good areas
may not be correctly decoded due to the interleaving, which
in turn involves more data to be re-transmitted.

3.2 Tri-level Error Correction
Due to the above error characteristics and the restrictions

of traditional error correction techinques, we develop an er-
ror correction method of RDCode for: (a) nonuniformity
that different areas within a frame should have different error
correction abilities, (b) autonomy that partial unavailability
should not spread to other locality, and (c) effectiveness that
only reasonable overhead should be attached.

The error correction method involves with three levels for
the errors within blocks, frames and packets, respectively,
among which the first is for data correctness and the last
two are for data integrity.

Block level. Intra-block error correction is for blocks. Inside
the blocks we focus on the errors caused by noises. It’s more
important to detect errors rather than correct slight errors in
this level, since the transmission is not reliable if erroneous
data are detected as correct. In our implementation, we
use the Reed-Solomon (RS) code [34] for its strong error
correction and detection ability. Based on a finite field with
256 elements (1 element represents 1 byte), an RS(n, k) code
has the ability to correct up to b(n− k)/2c error bytes and
to detect any combinations of up to n−k error bytes, and all
the encoded bytes in a block are called an RS message. In
order to improve the error detection ability, before encoding
into an RS code, the last byte of the original message is set
to the XOR of all other bytes in it. A receiver calculates
their XORs to verify the correctness after the RS code has
been successfully decoded.

Blocks in different areas are encoded with different param-
eters. For example, blocks in the border and corner areas
have more correction ability than the other areas.

Frame level. Inter-block erasure correction is for frames. If a
block fails to be located, or the intra-block error correction
method can detect but cannot correct the errors, it is marked

as a missing block. Since we know their indexes, we can
apply any erasure code across the blocks. As the error dis-
tribution has regularity, RDCode uses a simple parity-check
code to recover erased blocks because of its computational
efficiency. Other erasure codes (e.g., Reed-Solomon erasure
code) could also be used for stronger correction guarantee,
but with more computation.

We treat each block as a code element. Some blocks are
parity-check blocks, which are also protected by intra-block
error correction, but their contents are generated by other
blocks. Suppose we have N blocks with indexes 1...N in a
frame. The statistical missing probabilities of each block 3

are expressed by P (1..N). We sort this array in decreas-
ing order and generate another array Psorted(1..N) in which
Psorted(i) is the index of the block with the ith largest miss-
ing probability. There are in total p parity-check blocks
where p is a parameter set manually. The indexes of those
blocks are expressed by Check(1..p), and are determined by:

Check(i) = Psorted(dN/2p−ie)

Suppose that Block(i) denotes the original message of the
block with index i, and for each i ∈ [1, p], start = i, end =
Check(i)− 1, then

Block(Check(i)) =
end⊕

j=start

Block(Psorted(j)),

where
⊕

is the direct sum operator. When decoding, the
parity-check blocks are used to recover the missing blocks.
Each parity-check block can recover one missing block that
it covers. Since a block with a higher rank in Psorted is
involved to a parity-check block that covers fewer blocks,
blocks with a high missing possibility are more possible to
be recovered. A situation may happen that two blocks may
have different original message lengthes due to intra-block
error correction. When computing XOR, we let the result
have the longest length of all the involved original messages,
so that all the content of these messages can be covered.

The code design makes encoding and decoding procedures
take linear time regardless of p. This code could recover at
most p blocks by using p parity-check blocks.

Packet level. Inter-frame erasure correction is for packets.
The blocks with the same block index i in a packet are denote
as subpacket(i), and subpacket(i)(j) denotes the content of
jth block in subpacket(i).

Entire frame loss happens mostly sequentially since trem-
bles last a period of time, typically 0.1 to 0.5 second.
Our idea is that it is guaranteed to tolerate q consecu-
tive frames loss within a packet containing n frames by
using the last q frames as parity-check frames. We set
start = 1, end = d(n− j)/qe − 1 (j ∈ [0, q)), and for each
i ∈ [1, block number per frame],

subpacket(i)(n− j) =
end⊕

k=start

subpacket(i)(n− j − kq)

While receiving a packet, after the first two corrections,
each valid or missing block is marked in a table. When the
next packet is arriving, the receiver will check if there exist
some missing but recoverable blocks within each subpacket,
and then recover them.

3In our implementation, corner blocks have higher miss-
ing probability than border blocks, and border blocks have
higher missing probability than the remaining blocks.



3.3 Data Ordering
Due to the rolling shutter problem, blocks are asyn-

chronously decoded, i.e., blocks belonging to the same frame
of a sender may be captured in different frames by a receiver.
A straightforward method to keep the ordering of blocks is to
add a full sequence number (including the frame index and
packet sequence number) to each block, but this brings too
much redundancy. Observe that at most two partial frames
from a sender can overlap in a captured frame of a receiver,
so the difference of any two blocks’ sequence number within
a captured frame is equal or less than 1.

The block containing the center locator is different from
other blocks since it is always being first located and recog-
nized in RDCode. We simply put the full sequence number
of a frame in the center block. Note that this method re-
mains protecting all the data in a block. The data within
a block, including the sequence number, has few chances to
be wrong if it is correctly decoded by the intra-block error
correction method.

Inside each block, there exists a short relative sequence
number containing the last 2 bits of the frame index. When
dealing with a corrected block, RDCode compares its 2-bit
frame index with the last 2 bits of the frame index in the
center block, and checks the following.

(1) If they are equal, the full sequence number of this block
is the full sequence number in the center block.

(2) If its 2-bit frame index is one smaller/bigger than the last
2 bits of the frame index in the center block (3 is one smaller
than 0, and 0 is one bigger than 3), the full sequence number
of this block is one smaller/bigger than the full sequence
number in the center block.

(3) The case that the 2-bit frame index is two smaller/bigger
than the last 2 bits of the frame index in the center block
happens rarely. If it happens, the block is simply dropped.

With these, the accurate sequence number of each block is
obtained with only 2-bit overhead in each non-center block
that contains more than 200 bits data.

Remarks. (1) The novelty of our techniques to enhance
the reliability lies in that instead of simply applying a single
Reed-Solomon code like most barcode systems, we analyze
the characteristics of data errors, utilize our tri-level barcode
layout and design a tri-level error correction method to de-
code the decodable parts of data as much as possible to
increase the data integrity. (a) The block level is designed
for detecting errors and correcting slight errors caused by
noises. (b) The frame level is designed for recovering un-
decodable blocks caused by partial unavailability problems
such as dirty marks or unsuitable shooting positions. And
(c) the packet level is designed for tolerating typical trembles
by temporally recovering undecodable frames. We adopt
Reed-Solomon codes at the block level because of its strong
error detection and correction ability, and we also design own
parity check codes, a light-weight solution, at the frame and
packet levels for the high efficiency.

(2) Although the tri-level scheme used in RDCode works
well in our implementation and evaluation, our scheme is
not optimal given that many FEC codes exist. However, for
communications over screen-camera links, we are the first to
analyze some characteristics of the data errors, and explore
a multi-level scheme which works much better than using
Reed-Solomon codes alone in our tests.

(3) Based on the multi-layer design of RDCode, a more
suitable error correction scheme for vlc over screen-camera
links is worth further study. For example, we expect to
associate each symbol with the confidence of color discrim-
ination, then LDPC codes [7] are feasible for RDCode. In
addition, our tri-level scheme belongs to block codes, which
enables almost any transmission application including file
transmission and data stream transmission. If only targeted
on file transmissions with fixed lengths, suboptimal rateless
(fountain) codes such as Raptor codes [29] are capable to
replace the erasure correction codes in RDCode. It should
be pointed out that the visual cryptograhy [22,23] proposed
some interesting ideas, e.g., by dividing a pixel to subpixels,
to increase the transmission robustness and security, which
provides more insights for a further study on coding.

4. IMPLEMENTATION
We have implemented RDCode on an Android 4.2 plat-

form using Scala with the Android SDK and Scala com-
piler. Our experiments involve with three devices: one
tablet (Asus Nexus 7) and two smartphones (LG Nexus 4
and Samsung Galaxy S3). During all the tests, our system
runs on all these smart devices smoothly.

We have also developed an online encoder and an online
decoder for file transmissions. Since Fountain codes [29]
require high time complexity on solving linear systems as
pointed out by [33], we make the file repeating in the data
stream plus a simple coding scheme. Note that the effec-
tiveness of RDCode design significantly reduces the chances
of packet retransmissions. In order to reduce the time used
for retransmission waiting, for even loops, we add the first
half packets to the second half packets using XOR opera-
tions, and for odd loops, we add the second half packets to
the first half packets. Using such a coding technique, it sig-
nificantly reduces the waiting time up to 0.5 loop since if a
packet in the second half is missing, receivers can recover it
by decoding the corresponding packet in the first half with
a constant computation complexity.

How to choose the c colors of symbols is important and
complementary to the design of RDCode, which itself de-
serves a further study. In our tests, the error rate of using
2 colors are almost the same of using 4 colors, while using 8
colors introduces tripled error rate on average. Since 8 col-
ors can present 3 bits data which is only 3/2 times of what 4
colors can present, we choose to use 4 colors. Since the raw
data from the camera of Android phones are in the YUV for-
mat, we choose to use the most distinct four colors, orange,
green, pink and blue in YUV color space for efficiency.

The sender of RDCode has an option to let a user ini-
tiate a file transmission, after which the file is encoded to
RDCode packets. When forming frames, the sender changes
the symbol size to fill in different number of symbols on the
screen. Once a frame is produced, it is drawn on the screen.

The drawing procedure itself takes much more time than
the encoding procedure since thousands of color squares
need to be rendered. To address this problem for the real-
time encoding, we use four additional threads, which is equal
to the number of CPU cores of Nexus 4 and Galaxy S3.
They’re all for rendering the squares to a bitmap buffer.
Each thread takes charge of rendering one-fourth distinct
symbols of a frame. The four threads and the encoder
thread form a pipeline that produces and draws frames effi-



ciently. When all packets of a file are transmitted, the sender
repeats the above process and resends the packets until the
entire file is correctly received.

When a frame contains about 10,000 symbols, our online
encoder can produce ten RDCode frames per second, and
display the RDCode frames at a 10FPS refresh rate on the
screen. The rendered frames are also saved to the flash stor-
age of smartphones to further speed up the process offline
and reach a faster refresh rate.

We also use the multi-thread technique to reduce the pro-
cessing time of a receiver. Since the blocks and distributed
locators are autonomous, it is easy to make the decoding
procedure in parallel. We further insert a flag to each of
the blocks that indicates the frame parity. If a block to be
decoded has a flag that is the same as the block in the same
place of the last processed frame, and the block is success-
fully decoded, then there is no need to re-decode the block
again since it is identical to the last decoded block. This
optimization improves the efficiency of real-time decoding.
When the bit rate reaches 300Kbps, it is still able to decode
RDCode in real time using our tested smartphones. We
have also implemented an offline decoder by further adding
a layer to save or load the raw captured data to or from a
file stored in an SD card.

The Android platform also provides a few parameters to
customize a camera’s performance. In our implementation,
the camera’s ISO is set to 400, its RecordingHint is set to
true, and the others are using the default. The captured
frame rate of our smartphones is kept above 24FPS with
this setting in our tests.

5. EVALUATION
In this section, we report the experimental results of RD-

Code on the various factors of transmission reliability and
throughput, compared with the existing state-of-the-art ap-
proach COBRA [12]. We test RDCode from four aspects.
(a) Base design: to evaluate the RDCode layout and sym-
bol extraction methods to see how it improves the decoding
accuracy as well as the reliability under different environ-
ments. (b) Error correction: to know how the parameters of
our error correction method would affect the result of data
correctness and integrity; (c) Benchmark: to measure and
compare the system performance of our work and previous
works by transmitting files; (d) Decoding efficiency: to know
whether our implementation could support real-time decod-
ing on off-the-shelf smartphones.

Experimental settings. Our experimental receiver de-
vices are LG Nexus 4 and Samsung Galaxy S3. They are
the off-the-shelf normal Android smartphones equipped with
standard screens or cameras, and they both have a camera
of 8M pixel resolution and 1280*720@30FPS video captur-
ing rate. Besides the two smartphones, we additionally use
an Asus Nexus 7 tablet as the sender device.

Unless otherwise stated, our experiments are tested under
an indoor environment with normal light condition (1 to 100
lx). (a) Except those tests for trembles and capture posi-
tions, the sender and receiver devices are kept still without
any relative movement, and the capture scope of the receiver
just fits the complete screen of the sender4. (b) Except those
tests about display brightness and ambient luminance, the

4It is tested that when the captured image just fits for the
entire screen of the sender, their distance is about 21cm.

brightness of the screen is set to 50% of its maximum bright-
ness. The workload is evaluated by a binary file containing
integers produced by the Scala Class Random. In the tests,
we use the offline encoder and offline decoder of RDCode,
and the source code of COBRA comes from its authors, in-
cluding an online encoder and an offline decoder written in
Java and Matlab, respectively.

5.1 Base Design Comparison
We first evaluate whether our base design could lay down

the possibility to reliability. As a most recent approach to
establishing screen-camera links between smartphones, the
major contribution of COBRA [12] is its base design for fast
and adaptive transmissions. The following LightSync [33]
adopts COBRA’s design so we only compare our work with
COBRA. The comparison focuses on two aspects: code ex-
traction accuracy and frame capacity. We disable the error
correction method of RDCode in this test.

Accuracy of extracted symbols using different re-
ceivers and senders. We measure the bit-error-rate of
RDCode and COBRA under different receivers and senders.
Note that in COBRA [12] the metric decoding rate denotes
the percentage of correctly decoded data in the total amount
of data contained in a barcode. Since COBRA does not uti-
lize error correction or detection codes, this metric is equal
to one minus the bit-error-rate if COBRA takes bits as the
transmission unit. Our experimental results coincide with
the results in COBRA.

Since the frame capacity directly determines the perfor-
mance of barcodes. For RDCode, we set blocks with 12 ∗ 12
symbols per block and change the number of blocks per
frame. For COBRA, we vary the symbol size from 5 to
15, i.e., 5 ∗ 5 to 15 ∗ 15 pixels. We only take the successfully
located frames into account. We first use Asus Nexus 7 as
the sender and the two smartphones as receivers, and report
the result in Fig. 6(a). Because of the distortion caused
location error and inaccuracy of color matching, the error
rates of COBRA differ obviously and increase quickly with
the increment of data capacity. Moreover, the original CO-
BRA does not have error detection and correction ability so
that COBRA cannot support much reliability. In contrast,
the error rate of RDCode keeps low because of its adap-
tive methods. RDCode improves the maximum available
data capacity to about 30000 bits per frame, more than two
times of COBRA, with only less than 10% bit errors using
two smartphones as receivers. Since the two results of RD-
Code are very similar, we will only show the average result of
the two receivers in the following experiments for simplicity.

Since different senders have different color accuracies and
luminance, which may affect the noises on the barcodes,
we keep one smartphone as the receiver and use different
senders to do the same experiments as above. Results re-
ported in Fig. 6(b) and Fig. 6(c) show that both COBRA
and RDCode are not sensitive to senders, while RDCode has
a slightly better performance on the uniformity.

Accuracy of extracted symbols under different dis-
play brightness and ambient light intensity. Two
key parameters of screen to camera communication are the
brightness of the display and the ambient light intensity of
the capturing environment. The brightness of the display
affects the captured noises and color accuracy, and the am-
bient light intensity affects the visibility of the display. We
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Figure 6: The bit-error-rates of RDCode and COBRA under different senders and receivers.

Settings Illuminance Brightness of Located block Bit error
(lx) display (%) ratio (%) rate (%)

outdoor
6000-9000

50 0 -
(sunlight) 100 39 15
outdoor

100-1000
50 76 9

(shadow) 100 98 5
indoor

2-100
50 99 1

(normal) 100 100 1
indoor

0
50 100 1

(dark) 100 100 1

Table 1: The located blocks ratio and bit-error-rate under
different display brightness and ambient illuminance.
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Figure 7: Left figure illustrated the settings of testing partial
unavailability. Right figure shows the successfully decoded block
ratio w.r.t. different distance and shifting.

test two different display brightness, 50% and 100%, un-
der different environments including outdoor under sunlight,
outdoor in a shadow, indoor with normal light condition,
totally dark indoor, by recording the ambient illuminance
using the front ambient light sensor equipped in the sender.
In this test we use LG Nexus 4 as the sender and Galaxy
S3 as the receiver, respectively. We fix a RDCode frame to
contain 11*9 blocks each of which contains 12*12 symbols
in the tests.

The result is shown in Table 1 by measuring two metrics:
(a) the located blocks ratio, which is defined as the ratio of the
successfully located blocks by the receiver in all the displayed
blocks by the sender, and (b) the bit-error-rate, the ratio of
bit errors in successfully located blocks. Results show that
RDCode does not work well under intense sunlight. This is
a common problem for VLC over screen-camera links due to
the limitations of current LCDs, as the luminance of LCDs
is much smaller than the strong sunlight. However, with the
emerging of new technologies such as e-ink display5, this
problem could be alleviated.

5.2 Data Correction
In this experiment, we fix in a frame the block number

to 13*9 and each block contains 12*12 symbols, so that a

5http://en.wikipedia.org/wiki/E Ink

frame contains 156*108 symbols (exclude the leftmost and
bottommost distributed locators).

Comparison with standalone error correction codes.
We first compare the decoding performance of our tri-level
error correction scheme with a standalone error correction
code applied to our design. We have tested two candidates:
(1) RS code over GF(256) and each block contains one mes-
sage. (2) Interleaved RS code over GF(256), those bytes
of the same index within each block form a message. We
change the code rate by varying the parameter n − k. For
our tri-level error correction scheme, we change the code rate
by varying the parameters n − k and p . As Fig. 10 shows,
our method is more efficient than the two standalone error
correction codes on the screen-camera transmission channel,
by obtaining more corrected blocks with the same code rate.
Although there exists a rather small possibility that a wrong
message is determined right by RS code in theory, during all
of our experiments, no such cases happen.

Data integrity: successfully decoded block ratio
within a frame. By combining intra-block error correction
with inter-block erasure correction, we may change their pa-
rameters p and n−k, capture and decode one static barcode
frame, and evaluate the average successfully decoded block
ratio (Fig. 8) that denotes the percentage of successfully de-
coded blocks in all sent blocks. Note that border blocks
have worse error rates so we double the n− k parameter of
those blocks. From the figures we know that the setting of
n− k = 6 and p = 4 is enough for the balance of per-frame
data integrity and data capacity.

When partial unavailability problems happen, some
blocks may be unavailable. We do a simple test that mea-
sures the data integrity under this case. Fig. 7 (left) illus-
trates that the receiver is placed at different distance d and
different shifting s. It is clear that the more s or less d is,
the smaller part of a frame can be captured. The right chart
of Fig. 7 shows RDCode has the ability to decode available
blocks as much as possible. Oppositely, as we tested, pre-
vious works such as COBRA have no such ability and a
whole frame is undecodable as soon as a corner tracker is
lost tracking, which reduces the data integrity seriously.

Data integrity: successfully decoded block ratio
among multiple frames. When displaying barcode se-
quence, the aim of inter-frame erasure correction is to toler-
ate temporal partial unavailability problems mainly caused
by trembles. Figure 11 plots the decoding ratio and trans-
mission speed with regards to the changing acceleration
caused by trembles. In this experiment, we put the sender at
a fixed position, and held the receiver with a hand by a real
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Figure 11: The relationship among successfully decoded blocks
ratio, instant transmission speed and changing acceleration
caused by trembles.

user to capture RDCode. We fix the sender’s refresh rate to
8FPS and q = 2. We then capture an RDCode containing 8
packets by hand and record the changing acceleration of the
receiver, and in the meanwhile we record the instant data
sent rate, received rate and successfully decoded block ra-
tio. As shown in Fig. 11, the inter-frame erasure correction
can recover most blocks in lost frames caused by unexpected
trembles. As a result, more than 99% data is obtained. Al-
though not all data are received, inter-frame erasure correc-
tion plays an important role by recovering most lost blocks.

When no trembles happen, since inter-frame erasure cor-
rection is based on block operations, it could also signifi-
cantly improve the packet integrity. For example, in order
to solve aliasing, the refresh rate of senders should be at
most half of the capture rate of receivers, which is at least
24FPS. As Fig. 9 shows, when q = 0, the successfully de-
coded block ratio drops suddenly when the refresh rate is
beyond 10FPS. But when q = 2, inter-frame error correc-
tion increases the maximum tolerable refresh rate to 12FPS
by recovering overlapped frames.

5.3 Benchmarks
We now set n − k = 6, p = 4 and q = 2 as the error

correction parameters, and focus on the whole system to
find out the best trade-off between transmission speed and
reliability. We do experiments under three common block
numbers (11*7, 13*9, 15*9), and each block contains 12*12
symbols. We also set different refresh rates for senders.

Throughput and packet error rates. Throughput
means successfully decoded bytes per unit time excluding
the redundant error correction codes. Packet is the trans-

mission unit of the system. If a packet is not completely
received, we say that it is a packet error since the packet
cannot be recovered unless re-transmission. The packet er-
ror rate is the metric for packet-level data integrity. We
measure the throughput and packet error rate by processing
100 packets under different settings. The result is reported
in Fig. 12, which shows that the packet error rate is tol-
erable, about 5%, under 10FPS refresh rate and 156*108
symbols per frame. In this case, the maximum throughput
is about 21.8KB/s.

Comparison on goodput. The final measurement of
transmission performance is to transmit a real file and test
the goodput. Goodput measures the application layer per-
formance. In RDCode, goodput means the transmitted file
size divided by total transmission time. We use a 128,000
byte file containing pseudo-random data. Figure 13 shows
the maximum, minimum and average goodput. The entire
transmission process finished within 1.5 loops in most cases.

We also want to show how COBRA performs at the ap-
plication layer. Since COBRA does not focus on reliability,
we first encode the original data by Reed-Solomon code over
GF (256), and then add a header to indicate the full sequence
number to each frame. The online encoder of COBRA can-
not be used under refresh rates larger than 5FPS due to
its low drawing performance. Hence, we use the generated
image files to make a video to play offline.

The experiments of COBRA cannot be successfully done
when the symbol number per frame is more than about
110*70 since location errors happen frequently. Also, when
the refresh rate reaches 10, i.e., the same as RDCode, a
number of frames are lost due to the rolling shutter prob-
lem. As a result, we set 100*60 symbols per frame, and test
two refresh rate: 10FPS and 7FPS.

We test the average loops and goodput by transmitting a
single 128KB file. Meanwhile, we also record the bit-error-
rate and successfully decoded block ratio of both COBRA
and RDCode. We use bandwidth to measure the raw bit rate
sent by the receiver. Table 2 shows that RDCode provides
a big advantage for both transmission speed and reliabil-
ity. First, keeping error rates at a low level, the base design
of RDCode supports a higher bandwidth by increasing the
data capacity within each frame. Second, our goodput is
even much better than the throughput of COBRA, because
our error correction methods increase the data integrity and
reduce the retransmission loops. The big difference between
the throughput and goodput of COBRA indicates COBRA
is not designed for reliable transmissions and frequent re-
transmissions are typically needed.
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Setting
Base design After error correction File transmission

Bandwidth Bit-error-rate
Maximum

Throughput
Successfully

decoded blocks
Goodput

Average
loops

RDCode 156*108@10FPS, 324kbps 1.1% 21.8KB/s 99.2% 17.0KB/s 1.28
p = 4, n− k = 6, q = 2

100*60@10FPS, RS(255, 191) 120kbps 4.5% 8.8KB/s 89.4% 2.1KB/s 4.13
COBRA 100*60@7FPS, RS(255, 191)

84kbps 2.1%
6.1KB/s 94.6% 3.0KB/s 2.03

100*60@7FPS, RS(255, 127) 4.1KB/s 98.8% 2.6KB/s 1.60

Table 2: Comparison of the goodput of file transmit application between RDCode and COBRA.

We did not compare RDCode with LightSync. One rea-
son is that LightSync is based on the design of COBRA,
and limits its symbol to only represent one bit as LightSync
only uses two colors. Hence its available data capacity per
frame is the half of COBRA. Its inter-frame erasure code
also halves the throughput. Another reason is that we could
not get its source code and its binary executable file cannot
run properly under Android 4.x. However, LightSync [33]
stated its maximum throughput is about 11KB/s, much less
than the one of RDCode.

5.4 Decoding Efficiency
We finally show that the decode processing time is the re-

quirement of online real-time decoding. In order to decode
the frames in real time with smartphones, in our implemen-
tation, the processing time of decoding each frame at smart-
phone must be smaller than the frame interval of the sender.
If the sender’s refresh rate is 10FPS, then the processing
time must be less than 100ms. We keep 12 ∗ 12 symbols per
block, vary the frame size, and use LG Nexus 4 to capture
and decode about 5 seconds, and then we test the average
processing time per frame. Error correction parameters are
set to p = 4, n − k = 6, q = 2. The center locator is only
needed to be located at the first captured frame, and the
decoder tracks the distributed locators during the following
frames. As shown in Table 3, the experiments demonstrate
that locating does not take much time. The main drawback
is that the pixel sampling depends on the operating system.
Overall, the decoder can process the received data in real
time under the limited computing ability of smartphones.

6. RELATED WORK
Visible Light Communication. Visible Light Commu-
nication(VLC) [13] is a kind of data communications that
uses the visible light as a medium. Many works [2, 8] are
dedicated to gain a fast transmission channel using visible
light. However, extra equipments are needed, which are not
available by ordinary people.

Symbols count 84*60 156*108
Thread count 1 4 1 4

Center locator 63ms 68ms
Distributed locator 13ms 14ms

Data extraction 44ms 13ms 150ms 43ms
Error correction 7ms 4ms 27ms 9ms

Total 64ms 30ms 191ms 66ms

Table 3: The average processing time per frame by decoder.

Barcodes. Various barcodes are usable nowadays includ-
ing one dimensional barcodes [15] and two dimensional bar-
codes [16, 17]. Some new barcode designs such as High Ca-
pacity Color Barcode (HCCB) [24] use multiple colors to
multiply the data capacity. With the help of various decod-
ing techniques to improve the decoding quality [19], popular
barcodes have a high first-read rate (FRR) [18] during the
scanning process.

Screen-camera links. Due to the high availability of
smartphones, vlc over screen-camera links are widely stud-
ied recently. Approaches like [25] modulate data using
OFDM technology and achieve a high throughput using high
definition LCDs and high quality cameras. 4D Barcode [21]
is the first attempt to decode sequential barcode streams us-
ing phones to the best of our knowledge. It uses sequential
Data Matrix barcodes [16] to multiply the throughput, and
uses different color channels with redundant data to reduce
errors. Because its design is based on traditional barcodes,
decoding takes lots of time and the throughput is low. CO-
BRA [12] contributes a novel barcode design for real-time
phone to phone transmission, and optimizations for alleviat-
ing decoding errors caused by motion blur. COBRA makes
the link more adaptive to smartphones, but the locality and
partial availability problems discussed in Section 1 are not
in their consideration.

These works use at most half of the capture frame rate
as the sender’s refresh rate since the continuous frames may
overlap. LightSync [33] contributes to solve the frame syn-
chronization problem based on COBRA. However, it limits



the colors to black and white which reduces the throughput.
Further, although both LightSync and RDCode address the
rolling shutter problem, they are orthogonal to each other.

Data transmissions. In duplex unicast transmission,
many network protocols such as TCP [26] support reliable
transmissions. However, it is difficult to apply their tech-
niques for one-way communications.

[11] discussed some schemes to obtain a reliable multicast
channel, and their methods use feedbacks to ensure the data
integrity [30]. If no feedbacks are available, FEC codes [32],
such as Reed-Solomon [34] and LDPC [7], are used to keep
the correctness [28], and to control the errors on one-way
channels, which has been widely studied to obtain better
correction ability and more efficient encoding and decoding
algorithms. Most standard barcodes such as QR-Code use
Reed-Solomon code as their FEC codes. If error positions
are known, erasure codes can be used to fix errors with less
redundancy [9]. Fountain codes such as Raptor codes [29]
are a class of erasure codes that do not have a fixed code rate.
Different codes can be combined to improve the correction
ability for various channels [14].

7. CONCLUSION
We have proposed RDCode, a robust dynamic barcode,

which boosts the throughput over screen-camera links via
smartphones by enhancing transmission reliability. (a) We
design a packet-frame-block barcode layout and symbol ex-
traction techniques to address the locality and partial un-
availability problems, caused by smartphone limitations and
user behavior uncertainty. (b) We develop a tri-level error
correction approach to enhancing reliability. (c) We imple-
ment RDCode on top of an Android platform for file trans-
missions, and our experimental results show that RDCode
both improves the transmission reliability and speed, com-
pared with the existing state-of-the-art approach COBRA.

Several topics are targeted for future work. First, our
design brings the possibility to customize colors, but how
to choose colors effectively and efficiently worths a further
study. Second, we are to investigate the impacts of dif-
ferent FEC codes on RDCode. In addition, we are explor-
ing other possibilities to boost reliability over screen-camera
links. Finally, customized frame shapes may be incorporated
to improve the aesthetical effect.
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